沙敏
博士,副教授,硕导 数学科学学院
研究方向: 数论及其应用
min.sha@m.scnu.edu.cn

教育背景

2003.9--2007.7  华南理工大学  本科 (数学与应用数学)
2007.9--2010.7  清华大学  硕士(基础数学:数论) 
2010.9--2013.10   法国波尔多大学  博士(基础数学:数论)

工作经历

2020.7.29--  华南师范大学数学科学学院  副研究员、副教授
2019.4.1--2020.7.10 澳大利亚新南威尔士大学数学与统计学院  Research Fellow
2016.6.27--2019.3.31 澳大利亚麦考瑞大学计算机系  Macquarie University Research Fellow
2013.12.2--2016.6.26 澳大利亚新南威尔士大学数学与统计学院  Postdoctoral Fellow

开设课程

本科课程:高等数学、离散数学

研究生课程:基础代数

科研项目

5. 广东省自然科学基金面上项目,代数数的乘性相关性,2022.01--2024.12,主持。
4. 国家自然科学基金面上项目,Abel群分解理论及其应用,2022.01-2025.12,参加。
3. 澳大利亚研究理事会Discovery Early Career Researcher Award项目,Linear recurrence sequences over function fields and their applications,2019.4--2022.4,主持,因为回国工作项目提前终止。
2. 广东省自然科学基金面上项目,Mertens定理的一般形式,2019.10--2022.9,参加。
1. 国家自然科学基金青年科学基金项目,p-进模形式与类域构作问题,2016.1--2018.12,参加。

学术成果

研究兴趣广泛,涉及代数数论、椭圆曲线、有限域理论、多项式理论、算术动力系统、线性递归序列、数论中的图论问题等等。研究成果丰富,至今发表了50余篇SCI论文,发表的期刊包括:Trans Amer Math Soc, Math Comp, Int Math Res Notices, J Comb Theory B, Math Zeit, Form Math, Moscow Math J, Canadian J Math, Math Res Letters, Proc Amer Math Soc, Bull London Math Soc, J Algebra, J Number Theory, Acta Arith, Ramanujan J, Finite Fields Th App, J Complexity等知名期刊。


科研论文:

[60] A. Dubickas and M. Sha, Counting integer polynomials with several roots of maximal modulus, Preprint, 2024. 
https://arxiv.org/abs/2409.08625

[59] X. Li and M. Sha, On Euler's totient function of polynomials over finite fields, Preprint, 2024.
https://arxiv.org/abs/2401.17727

[58] A. Bérczes, Y. Bugeaud, K. Győry, J. Mello, A. Ostafe and M. Sha, Explicit bounds for the solutions of superelliptic equations over number fields, Forum Mathematicum, https://doi.org/10.1515/forum-2023-0381.
https://arxiv.org/abs/2310.09704

[57] A. Bérczes, Y. Bugeaud, K. Győry, J. Mello, A. Ostafe and M. Sha, Multiplicative dependence of rational values modulo approximate finitely generated groups, Mathematical Proceedings of the Cambridge Philosophical Society, https://doi.org/10.1017/S0305004124000173
https://arxiv.org/abs/2107.05371

[56] Z. Chen, M. Sha* and C. Wei, On the generalized Fibonacci sequence of polynomials over finite fields, Finite Fields and Their Applications, 97 (2024), Article 102446.
http://arxiv.org/abs/2303.17525

[55] X. Li, G. Peruginelli and M. Sha, On the Lucas and Lehmer sequences in Dedekind domains, Publicationes Mathematicae Debrecen, to appear.
https://arxiv.org/abs/2006.09880

[54] A. Dubickas, M. Sha* and I. E. Shparlinski, Euclidean minima of algebraic number fields, Archiv der Mathematik, 122 (2024), 405-414.
http://arxiv.org/abs/2307.10880

[53] S. Hu, M. Kim and M. Sha*, On the congruences of Eisenstein series with polynomial indexes, Ramanujan Journal, 62 (2023), 413-430.
https://arxiv.org/abs/1805.09225

[52] B. Mans, M. Sha, I. E. Shparlinski and D. Sutantyo, Functional graphs of families of quadratic polynomials, Mathematics of Computation, 92(2023), 2307-2331.

http://arxiv.org/abs/2208.01885

[51] S. V. Konyagin, M. Sha, I. E. Shparlinski and C. L. Stewart, On the distribution of multiplicatively dependent vectors, Mathematical Research Letters, 30 (2023), 509-540.
https://arxiv.org/abs/1903.09796

[50] A. Dubickas and M. Sha*, Counting decomposable polynomials with integer coefficients, Monatshefte fur Mathematik, 200 (2023), 229-253.
https://arxiv.org/abs/1803.08755

[49] S. Bae, S. Hu and M. Sha, On the Carmichael rings, Carmichael ideals and Carmichael polynomials, Colloquium Mathematicum, 171 (2023), 1-17. 
https://arxiv.org/abs/1809.05432

[48] F. Barroero, L. Capuano, L. Merai, A. Ostafe and M. Sha*, Multiplicative and linear dependence in finite fields and on elliptic curves  modulo primes, International Mathematics Research Notices, 2022 (2022), 16094-16137.
https://arxiv.org/abs/2008.00389

[47] J. Mello and M. Sha*, On the properties of Northcott and Narkiewicz for elliptic curves, International Journal of Number Theory, 18 (2022), 2129-2144.
https://arxiv.org/abs/1911.08752

[46] M. Sha, Zsigmondy's theorem and primitive divisors of the Lucas and Lehmer sequences in polynomial rings,  Journal of Algebra, 586 (2021), 830-843. 
https://arxiv.org/abs/2005.01940

[45] M. Sha and I.E. Shparlinski, Mobius randomness law for Frobenius traces of ordinary curves, Canadian Mathematical Bulletin, 64 (2021), 192-203. 
https://arxiv.org/abs/1909.00969

[44] F. Barroero and M. Sha, Torsion points with multiplicatively dependent coordinates on elliptic curves, Bulletin of the London Mathematical Society, 52 (2020), 807-815. 
https://arxiv.org/abs/1904.02474

[43] X. Li and M. Sha, A proof of Sondow's conjecture on the Smarandache function, The American Mathematical Monthly, 127 (2020), 939-943. 
https://arxiv.org/abs/1907.00370 

[42] X. Li and M. Sha, Polynomial analogue of the Smarandache function, Journal of Number Theory, 217 (2020), 320-339. 
https://arxiv.org/abs/1906.00510

[41] B. Mans, M. Sha, J. Smith and D. Sutantyo, On the equational graphs over finite fields, Finite Fields and Their Applications, 64 (2020), Article 101667. 
https://arxiv.org/abs/1906.12054

[40] X. Li and M. Sha, Congruence preserving functions in the residue class rings of polynomials over finite fields, Finite Fields and Their Applications, 61 (2020), Article 101604. 
https://arxiv.org/abs/1807.02379

[39] S. Hu, M. Kim, P. Moree and M. Sha, Irregular primes with respect to Genocchi numbers and Artin's primitive root conjecture, Journal of Number Theory, 205 (2019), 59-80. 
https://arxiv.org/abs/1809.08431

[38] P. Moree and M. Sha, Primes in arithmetic progressions and nonprimitive roots, Bulletin of the Australian Mathematical Society, 100 (2019), 388-394. 
https://arxiv.org/abs/1901.02650

[37] X. Li and M. Sha, Polynomial functions in the residue class rings of Dedekind domains, International Journal of Number Theory, 15 (2019), 1473-1486. 
https://arxiv.org/abs/1704.04965

[36] B. Mans, M. Sha, I.E. Shparlinski and D. Sutantyo, On functional graphs of quadratic polynomials, Experimental Mathematics, 28 (2019), 292-300. 
https://arxiv.org/abs/1706.04734

[35] A. Ostafe, M. Sha, I.E. Shparlinski and U. Zannier, On multiplicative dependence of values of rational functions and a generalisation of the Northcott theorem, Michigan Mathematical Journal, 68 (2019), 385-407. 
https://arxiv.org/abs/1706.05874

[34] S. Hu and M. Sha, On the additive and multiplicative structures of the exceptional units in finite commutative rings, Publicationes Mathematicae Debrecen, 94 (2019), 369-380. 
https://arxiv.org/abs/1612.04539

[33] M. Sha, Effective results on the Skolem Problem for linear recurrence sequences, Journal of Number Theory,  197 (2019), 228-249. 
https://arxiv.org/abs/1505.07147

[32] A. Dubickas and M. Sha, Multiplicative dependence of the translations of algebraic numbers, Revista Matematica Iberoamericana, 34 (2018), 1789-1808. 
https://arxiv.org/abs/1608.05458

[31] A. Dubickas and M. Sha, The distance to square-free polynomials, Acta Arithmetica, 186 (2018), 243-256. 
https://arxiv.org/abs/1801.01240

[30] D. Gomez-Perez, M. Sha and A. Tirkel, On the linear complexity for multidimensional sequences,  Journal of Complexity, 49 (2018), 46-55. 
https://arxiv.org/abs/1803.03912

[29] R. de la Breteche, M. Sha, I.E. Shparlinski and J.F. Voloch,  The Sato-Tate distribution in thin parametric families of elliptic curves, Mathematische Zeitschrift, 290 (2018), 831-855. 
https://arxiv.org/abs/1509.03009

[28] F. Pappalardi, M. Sha, I.E. Shparlinski and C. Stewart, On multiplicatively dependent vectors of algebraic numbers, Transactions of the American Mathematical Society, 370 (2018), 6221-6244. 
https://arxiv.org/abs/1606.02874

[27] A. Ostafe, M. Sha, I.E. Shparlinski and U. Zannier, On abelian multiplicatively dependent points on a curve in a torus, Quarterly Journal of Mathematics, 69 (2018), 391-401. 
https://arxiv.org/abs/1704.04694

[26] M. Sha and I.E. Shparlinski, Effective results on linear dependence for elliptic curves, Pacific Journal of Mathematics, 295 (2018), 123-144. 
https://arxiv.org/abs/1410.1596

[25] A. Dubickas and M. Sha, On the number of integer polynomials with multiplicatively dependent roots, Acta Mathematica Hungarica, 154 (2018), 402-428. 
https://arxiv.org/abs/1707.04965

[24] D. Gomez-Perez, A. Ostafe and M. Sha, The arithmetics of consecutive polynomial sequences over finite fields, Finite Fields and Their Applications, 50 (2018), 35-65. 
https://arxiv.org/abs/1509.01936

[23] A. Dubickas, M. Sha and I.E. Shparlinski, On distances in lattices from algebraic number fields, Moscow Mathematical Journal, 17 (2017), 239-268. 
https://arxiv.org/abs/1703.02163

[22] F. Luca, M. Sha and I.E. Shparlinski, On two functions arising in the study of Carmichael quotients, Colloquium Mathematicum, 149 (2017) , 179-192. 
https://arxiv.org/abs/1705.00388

[21] X. Li and M. Sha, Gauss factorials of polynomials over finite fields, International Journal of Number Theory, 8 (2017), 2039-2054. 
https://arxiv.org/abs/1704.04972

[20] M. Sha and I.E. Shparlinski, The Sato-Tate distribution in families of elliptic curves with a rational parameter of bounded height, Indagationes Mathematicae, 28 (2017), 306-320. 
https://arxiv.org/abs/1512.07301

[19] A. Ostafe and M. Sha, Counting dynamical systems over finite fields, Contemporary Mathematics, 669 (2016), 187-203. 
https://arxiv.org/abs/1505.03618

[18] S.V. Konyagin, F. Luca, B. Mans, L. Mathieson, M. Sha and I.E. Shparlinski, Functional graphs of polynomials over finite fields, Journal of Combinatorial Theory, Series B, 116 (2016), 87-122. 
https://arxiv.org/abs/1307.2718

[17] A. Dubickas and M. Sha, Positive density of integer polynomials with some prescribed properties, Journal of Number Theory, 159 (2016), 27-44. 
https://arxiv.org/abs/1504.05144

[16] M. Sha and I.E. Shparlinski, Lang-Trotter and Sato-Tate distributions in single and double parametric families of elliptic curves, Acta Arithmetica, 170 (2015), 299-325. 
https://arxiv.org/abs/1404.0182

[15] A. Dubickas, M. Sha and I.E. Shparlinski, Explicit form of Cassels' p-adic embedding theorem for number fields, Canadian Journal of Mathematics, 67 (2015), 1046-1064. 
https://arxiv.org/abs/1401.6819

[14] A. Ostafe and M. Sha, On the quantitative dynamical Mordell-Lang conjecture, Journal of Number Theory, 156 (2015),  161-182. Corrigendum: Journal of Number Theory, 164 (2016), 433-437. 
https://arxiv.org/abs/1501.02543

[13] A. Dubickas and M. Sha, Counting and testing dominant polynomials, Experimental Mathematics, 24 (2015), 312-325. 
https://arxiv.org/abs/1407.2789

[12] M. Sha, On the lattices from elliptic curves over finite fields, Finite Fields and Their Applications, 31 (2015), 84-107. 
https://arxiv.org/abs/1406.3086

[11] M. Sha,  The arithmetic of Carmichael Quotients, Periodica Mathematica Hungarica, 71 (2015), 11-23. Corrigendum: Periodica Mathematica Hungarica, https://doi.org/10.1007/s10998-017-0227-7. 
https://arxiv.org/abs/1108.2579

[10] A. Dubickas and M. Sha, Counting degenerate polynomials of fixed degree and bounded height, Monatshefte fur Mathematik, 177 (2015), 517-537. 
https://arxiv.org/abs/1402.5430

[9] M. Sha, On the non-idealness of cyclotomic families of pairing-friendly elliptic curves, Journal of Mathematical Cryptology, 8 (2014), 417-440. 
https://arxiv.org/abs/1304.7169

[8] M. Sha, Heuristics of the Cocks-Pinch method, Advances in Mathematics of Communications, 8 (2014), 103-118. 
https://arxiv.org/abs/1211.0971

[7] M. Sha, Bounding the j-invariant of integral points on certain modular curves, International Journal of Number Theory, 10 (2014), 1545-1551. 
https://arxiv.org/abs/1210.3224

[6] M. Sha, Bounding the j-invariant of integral points on modular curves, International Mathematics Research Notices, 2014 (2014), 4492-4520. 
https://arxiv.org/abs/1208.1337

[5] A. Bajolet and M. Sha, Bounding the j-invariant of integral points on X_{ns}^{+}(p), Proceedings of the American Mathematical Society, 142 (2014), 3395-3410. 
https://arxiv.org/abs/1203.1187

[4] M. Sha, Digraphs from endomorphisms of finite cyclic groups,  Journal of Combinatorial Mathematics and Combinatorial Computing, 83 (2012), 105-120. 
https://arxiv.org/abs/1007.1712

[3] M. Sha and L. Yin, Galois groups and genera of a kind of quasi-cyclotomic function fields, Journal of Number Theory, 132 (2012), 2574-2581. 
https://arxiv.org/abs/1007.1729

[2] M. Sha and S. Hu, Monomial dynamical systems of dimension one over finite fields, Acta Arithmetica, 148 (2011), 309-331. 
https://arxiv.org/abs/0910.5550

[1] M. Sha, On the cycle structure of repeated exponentiation modulo a prime power, Fibonacci Quarterly, 49 (2011), 340-347. 
https://arxiv.org/abs/1101.3482

社会兼职

其他

EN